Characterization of the vertices and extreme directions of the negative cycle polyhedron and harness of generating vertices of $0/1$-polyhedra

نویسندگان

  • Endre Boros
  • Khaled M. Elbassioni
  • Vladimir Gurvich
  • Hans Raj Tiwary
چکیده

Given a graph G = (V, E) and a weight function on the edges w : E 7→ R, we consider the polyhedron P (G, w) of negative-weight flows on G, and get a complete characterization of the vertices and extreme directions of P (G, w). As a corollary, we show that, unless P = NP , there no output polynomial-time algorithm to generate all the vertices of a 0/1-polyhedron. This strengthens the NP-hardness result of [2] for non 0/1 polyhedra, and comes in contrast with the polynomiality of vertex enumeration for 0/1-polytopes [1]. 1 The polyhedron of negative weighted-flows Given a directed graph G = (V,E) and a weight function w : E → R on its arcs, consider the following polyhedron:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Vertices and Extreme Directions of the Negative Cycles Polyhedron and Hardness of Generating Vertices of 0/1-Polyhedra

Given a graph G = (V, E) and a weight function on the edges w : E 7→ R, we consider the polyhedron P (G, w) of negative-weight flows on G, and get a complete characterization of the vertices and extreme directions of P (G, w). As a corollary, we show that, unless P = NP , there is no output polynomial-time algorithm to generate all the vertices of a 0/1-polyhedron. This strengthens the NP-hardn...

متن کامل

The negative cycles polyhedron and hardness of checking some polyhedral properties

Given a graph G = (V, E) and a weight function on the edges w : E 7→ R, we consider the polyhedron P (G, w) of negative-weight flows on G, and get a complete characterization of the vertices and extreme directions of P (G, w). Based on this characterization, and using a construction developed in [11], we show that, unless P = NP , there is no output polynomial-time algorithm to generate all the...

متن کامل

Generating all vertices of a polyhedron is hard 1 , 2

We show that generating all negative cycles of a weighted graph is a hard enumeration problem, in both the directed and undirected cases. More precisely, given a family of (directed) negative cycles, it is an NP-complete problem to decide whether this family can be extended or there are no other negative (directed) cycles in the graph, implying that (directed) negative cycles cannot be generate...

متن کامل

Edge-Directions of Standard Polyhedra with Applications to Network Flows

Recent results show that edge-directions of polyhedra play an important role in (combinatorial) optimization; in particular, a d-dimensional polyhedron with |D| distinct edge-directions has at most O(|D|d−1) vertices. Here, we obtain a characterization of the directions of edges that are adjacent to a given vertex of a standard polyhedron of the form P ={x :Ax = b, l x u}, tightening a standard...

متن کامل

A Generalized Ring Spiral Algorithm for CodingFullerenes and other Cubic Polyhedra 1

The so-called ring spiral algorithm is a convenient means for generating and representing certain fullerenes and some other cubic poly-hedra. In 1993 Manolopoulos and Fowler presented a fullerene on 380 vertices without a spiral. No smaller unspirable fullerene is known. In the spring of 1997, using computer, Gunnar Brinkmann found the smallest cubic polyhedron without a spiral. It has only 18 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0801.3790  شماره 

صفحات  -

تاریخ انتشار 2008